Carburateurs Bing des moteurs Rotax Aviation

Configuration des carburateurs Bing des moteurs Rotax aviation 2 temps

	Carburateurs	Silencieux d'admission	Jet principal	Jet du ralenti	Puits d'aiguille	i Aiguille	Clip d'aiguille	Tours vis à air
Rotax	1	Non	148	45	2.72	8L2	2	1
277 UL	1	Oui	140	45	2.72	8L2	1	1
Rotax	1	Non	165	45	2.70	802	2	1/2
377 UL	1	Oui	155	45	2.70	802	2	1/2
Rotax	1	Non	165	45	2.70	15K2	2	1/2
	1	Oui	155	45	2.70	15K2	2	1/2
447 UL	2	Non	135	50	2.70	6G1	3	1
	2	Oui	128	50	2.68	15K2	2	1
Rotax 503 UL	1	Non	180	45	2.74	8G2	3	1/2
jusqu'à #3785371	1	Oui	158	45	2.74	6H2	3	1/2
Rotax	1	Non	185	45	2.72	15K2	3	1/2
503 UL	1	Oui	165	45	2.70	15K2	3	1/2
après #3785372	2	Non	158	45	2.70	11K2	2	1/2
	2	Oui	148	45	2.68	11K2	2	1
Rotax 532 UL	2	Non	165	55	2.72	11G2	3	1
582 UL	2	Oui	145	55	2.68	15K2	2	1/2
Rotax 618 UL	2	Non	160 PTO 170 MAG	50	2.68	9M10J	2	1
	2	Oui	135 PTO 145 MAG	50	2.68	9M10J	2	1½

Ajustement du carburateur Bing des moteurs Rotax aviation 2 temps aux conditions atmosphériques

Le mélange air/essence que le carburateur fournit au moteur varie selon la densité de l'air. La densité de l'air fluctue en fonction de la température ambiante et de l'altitude au-dessus du niveau de la mer.

Il est parfois possible d'ajuster le mélange en variant la position du clip sur l'aiguille, mais pour les grandes variations de conditions atmosphériques, il est nécessaire de changer le jet principal.

La formule pour trouver le jet principal nécessaire est la suivante:

D₁ = Facteur de densité d'origine

D₂ = Nouveau facteur de densité

 $J_2 = (D_2 / D_1) X J_1$

J₁ = Jet principal d'origine

J₂ = Nouveau jet principal

Se référer à la grille ci-dessous pour trouver les facteurs de densité.

	m	0	500	1000	1500	2000	2500	3000	3500	4000
°C	°F/ft	0	1600	3300	5000	6500	8200	10000	11500	13000
-30	-22	104	103	101	100	98	97	95	94	93
-20	-4	103	102	100	99	97	96	95	93	92
-10	14	102	101	99	98	96	95	94	92	91
0	32	101	100	98	97	95	94	93	91	90
10	50	100	99	97	96	95	93	92	91	89
15	59	100	99	97	96	94	93	92	90	89
20	68	100	98	97	95	94	93	91	90	88
30	86	99	97	96	94	93	92	90	89	88
40	104	98	96	95	94	92	91	90	88	87
50	122	97	96	94	93	92	90	89	88	86

Par exemple: votre mélange était parfaitement ajusté avec un jet principal 158 pour voler au niveau de la mer à une température de 20° C, mais vous décidez d'utiliser votre moteur dans une région à 1500m au dessus du niveau de la mer, à une température de 30° C. De quel jet principal aurez-vous besoin? $J_2 = (94 / 100) \times 158 = 0.94 \times 158 = 148.52$

On arrondit à la taille de jet principal disponible supérieure au résultat, qui serait ici 150.

Configuration des carburateurs Bing des moteurs Rotax aviation 4 temps

		Jet principal	Jet du ralenti	Puits d'aiguille	Diffuseur	Aiguille	Clip d'aiguille	Tours vis à air
Rotax 912 UL		158	35	2.72	961200	961215	3	11/2
Rotax 912 ULS		155	35	2.70	961202	961215	3	11/2
Rotax 914 UL	cyl. 1/3	160	35	2.72	961200	961215	1	11/2
	cyl.2/4	164	35	2.72	961200	961215		